主席树 + 二分答案
对于这种区间内的值域问题一般用主席树进行求解。
因为数据范围只有1e6,所以不用离散化,直接建树即可。
题目要求找到区间内离p第k近的数,可以想到,这个问题具有单调性(某个区间长度有大于k个值,那么比这个区间长度更长的比如也有大于k个值)
于是我们可以二分答案这个距离,枚举离p距离为mid的范围(max(1, p - mid), min(p + mid, 1e6)
这样我们每次主席树上询问这个值域范围内的个数是否大于等于k判断枚举的mid是否可行,最后mid停下来的最小值就是答案。
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define __fastIn ios::sync_with_stdio(false), cin.tie(0)#define pb push_backusing namespace std;typedef long long LL;inline int lowbit(int x){ return x & (-x); }inline int read(){ int ret = 0, w = 0; char ch = 0; while(!isdigit(ch)){ w |= ch == '-', ch = getchar(); } while(isdigit(ch)){ ret = (ret << 3) + (ret << 1) + (ch ^ 48); ch = getchar(); } return w ? -ret : ret;}inline int lcm(int a, int b){ return a / __gcd(a, b) * b; }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 200005;const int M = 1000005;int _, n, m, tot, a[N], lc[M*20], rc[M*20], tree[M*20], root[N];int buildTree(int l, int r){ int cur = ++ tot; if(l == r) return cur; int mid = (l + r) >> 1; buildTree(l, mid); buildTree(mid + 1, r); return cur;}int insert(int rt, int l, int r, int val){ int cur = ++ tot; tree[cur] = tree[rt] + 1, lc[cur] = lc[rt], rc[cur] = rc[rt]; if(l == r) return cur; int mid = (l + r) >> 1; if(val <= mid) lc[cur] = insert(lc[rt], l, mid, val); else rc[cur] = insert(rc[rt], mid + 1, r, val); return cur;}int query(int a, int b, int l, int r, int ql, int qr){ if(l == ql && r == qr){ return tree[b] - tree[a]; } int mid = (l + r) >> 1; if(qr <= mid) return query(lc[a], lc[b], l, mid, ql, qr); else if(ql > mid) return query(rc[a], rc[b], mid + 1, r, ql, qr); return query(lc[a], lc[b], l, mid, ql, mid) + query(rc[a], rc[b], mid + 1, r, mid + 1, qr);}bool calc(int l, int r, int p, int k, int mid){ int ret = query(root[l - 1], root[r], 1, M, max(1, p - mid), min(p + mid, M)); return ret >= k;}int main(){ //freopen("data.txt", "r", stdin); for(_ = read(); _; _ --){ tot = 0; n = read(), m = read(); for(int i = 1; i <= n; i ++) a[i] = read(); root[0] = buildTree(1, M); for(int i = 1; i <= n; i ++){ root[i] = insert(root[i - 1], 1, M, a[i]); } int ans = 0; while(m --){ int L = read(), R = read(), p = read(), k = read(); L ^= ans, R ^= ans, p ^= ans, k ^= ans; int l = 0, r = 1e6; while(l < r){ int mid = (l + r) >> 1; if(calc(L, R, p, k, mid)) r = mid; else l = mid + 1; } printf("%d\n", l); ans = l; } } return 0;}